Labeled Trees Generating Complete, Compact, and Discrete Ultrametric Spaces

نویسندگان

چکیده

We investigate the interrelations between labeled trees and ultrametric spaces generated by these trees. The trees, which generate complete ultrametrics, totally bounded discrete ones, are characterized up to isomorphism. As corollary, we obtain a characterization of generating compact ultrametrics ultrametrics. It is also shown that every space tree contains dense subspace.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trees and ultrametric spaces: a categorical equivalence

There is a well-known correspondence between infinite trees and ultrametric spaces that comes from considering the end space of the tree. The correspondence is interpreted here as an equivalence between two categories, one of which encodes the geometry of trees at infinity and the other encodes the micro-geometry of complete ultrametric spaces. r 2003 Elsevier Inc. All rights reserved. MSC: pri...

متن کامل

The comb representation of compact ultrametric spaces

We call a comb a map f : I → [0,∞), where I is a compact interval, such that {f ≥ ε} is finite for any ε. A comb induces a (pseudo)-distance d̄f on {f = 0} defined by d̄f (s, t) = max(s∧t,s∨t) f . We describe the completion Ī of {f = 0} for this metric, which is a compact ultrametric space called comb metric space. Conversely, we prove that any compact, ultrametric space (U, d) without isolated p...

متن کامل

Compact O-complete Trees

In this paper, a novel am to ordered retrieval in very large files is developed. The method employs a B-tree like search algorithm that is independent of key type or key length because all keys in index blocks are encoded by a lo&f bit surrogate, where M is the maximal key length. For example, keys of length less than 32 bytes can be represented by a single byte in the index. This ensures a max...

متن کامل

Finitely labeled generating trees and restricted permutations

Generating trees are a useful technique in the enumeration of various combinatorial objects, particularly restricted permutations. Quite often, the generating tree for the set of permutations avoiding a set of restrictions Q requires infinitely many labels. Sometimes, however, this generating tree needs only finitely many labels. We characterize the finite sets of restrictions Q for which this ...

متن کامل

Generating functions for multi-labeled trees

Multi-labeled trees are a generalization of phylogenetic trees that are used, for example, in the study of gene versus species evolution and as the basis for phylogenetic network construction. Unlike phylogenetic trees, in a leaf-multi-labeled tree it is possible to label more than one leaf by the same element of the underlying label set. In this paper we derive formulae for generating function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Combinatorics

سال: 2022

ISSN: ['0219-3094', '0218-0006']

DOI: https://doi.org/10.1007/s00026-022-00581-8